
OWASP ZAP 2.4

Getting Started Guide

Overview
ZAP is an easy to use integrated penetration testing tool for finding vulnerabilities in web applications.
It is designed to be used by people with a wide range of security experience and as such is ideal for
developers and functional testers who are new to penetration testing as well as experienced security
professionals.

ZAP provides  automated  scanners  as  well  as  a  set  of  tools  that  allow  you  to  find  security
vulnerabilities manually.

You should only use ZAP to attack an application that you have permission to test. If you are worried
about using ZAP then switch to using the ‘Safe mode’ via the top level toolbar: this will significantly
reduce ZAP’s functionality but will prevent you from causing any damage.

You can download ZAP from https://github.com/zaproxy/zaproxy/wiki/Downloads
ZAP runs on Windows, Linux and Mac OS: the only dependency is Java 7.

The User Interface
By default ZAP displays:

- A top level menu which gives access to many of the automated and manual tools
- A top level toolbar which includes buttons for commonly used features
- A ‘tree’ window on the left hand side which displays the Sites tree and the Scripts tree
- A ‘workspace’ window on the top right hand side, which allows you to display and edit requests,
responses and scripts
- An ‘information’ window underneath workspace window, which displays details of the automated
and manual tools
- A footer which displays a summary of the alerts found and the status of the main automated tools

By default only the a small number of tabs are shown when ZAP starts.
Other tabs appear when you run the related tools, or can be added manually via the 'green
plus' tabs.
You can 'pin' tabs so that they are always shown when you restart ZAP.

In order to reduce the complexity of the UI many of ZAPs features are only shown via
context sensitive right-click menus. There are right-click menus throughout ZAP: on the nodes of
the Sites and Script trees, on the tables displayed in the information tabs and in the workspace tabs.
Some menus are only displayed when you highlight text - for example the ‘Fuzz...’ menu is only shown
if you right click a highlighted string in the Request tab.

When you start using ZAP it is worth right-clicking everywhere until you get used to the UI.

All of the menus can also be accessed via keyboard shortcuts. Default shortcuts are defined for most of
the menus, but they are all user configurable via the Tools / Options… menu. You can even generate
and print off a cheatsheet for the shortcuts you have configured via the Keyboard Options page.



Quick Start - Attack
The quickest way to get started with ZAP is to use the Quick Start tab, which allows you to enter a
single  URL  that  ZAP will  attack.  ZAP will  use  its  spider  to  crawl  the  application,  which  will
automatically passively scan all of the pages discovered. It will then use the active scanner to attack
all of the pages. This is a useful way to perform an initial assessment of an application, but it does
have some drawbacks.

Firstly  ZAP will  not  handle  any  authentication,  which  means  that  it  will  not  discover  any  pages
protected by a login page.  Secondly you have much less control of the exploring and attacking phases,
its a quick way to get started, but there's much more to ZAP than this. 

The Spiders
ZAP can only attack the pages of an application that it is aware of, which means that you must explore
your application in some way.  The Quick Start tab uses the ‘traditional’ spider which discovers links by
examining the HTML in the application responses. You can run this spider independently via the Spider
tab or the right click Attack menu.
This spider is very fast, but it is not always effective when exploring an AJAX application that generates
links using JavaScript.

For AJAX applications the AJAX spider is likely to be more effective. This spider explores the application
by invoking browsers which then follow the links which have been generated.
The AJAX spider is slower than the tradition spider and cannot be used in a ‘headless’ environment.

Proxying your browser
The spiders are an effective way of exploring an application but ideally they should be combined with
manual exploration. The spiders will only enter basic default data into forms, whereas a user can enter
more relevant information. This may well open up more of the application. For example, a ‘New user’
form may ask for a username, and entering a value like ‘aaa’ in the username field causes an error to
be displayed indicating that the username should be a valid email address. Neither of the spiders will
be able to act on this information, while a human will be able to react to the error, supply a valid
username and then open up more of the application’s functionality.

In order to explore an application manually you should configure your browser to proxy via ZAP. If you
are using a recent version of Firefox then the easiest way to do this is via the ‘Plug-n-Hack’ button on
the Quick Start tab.  You can also manually configure all modern browser to use ZAP as a proxy. See
the ZAP help file or your browser’s documentation for more details.

Active and passive scanning
ZAP passively scans all of the requests and responses that it discovers via the spiders or that are
proxied through it from your browser. Passive scanning does not change the responses in any way and
is therefore always safe to use. Scanned is performed in a background thread to ensure that it does not
slow down the exploration of an application.  Passive scanning is good for finding a limited number of
potential vulnerabilities, such as missing security related HTTP headers. It can be an effective way to
get a sense of the state of security in a given web application, and clues for where to focus more
invasive manual testing.

Active scanning attempts to find potential vulnerabilities by using known attacks against the selected
targets. As active scanning is an attack on those targets it is completely under user control and should
only be used against applications that you have permission to test. Active scanning can be started via
the Active Scan tab or the right click ‘Attack’ menu. 

ZAP has very fine grained control of exactly which active and passive scan rules are run and how
thoroughly they check for vulnerabilities.  this allows you to tune  ZAP to look more effectively  for
vulnerabilities common to the applications you are testing and to avoid false positives.



All of the potential vulnerabilities are shown in the Alerts tab. You can generate HTML and XML reports
including all vulnerabilities via the Reports menu.

Changing requests and responses
ZAP is an intercepting proxy, which means you can change requests and responses on the fly. All data
that passes through ZAP can be changed, including HTTP, HTTPS, WebSockets and postMessage traffic.

The following toolbar buttons are used to control ‘break points’ in the traffic:

Break on all requests and responses - the icon turns red when active
Submit and step to the next request or response
Submit and continue to the next break point
Bin the request or response
Add a custom HTTP break point

Intercepted messages are displayed in the Break tab and can be changed prior to submitting. Custom
break points can be used to intercept messages based on the criteria you specify - this can be useful
when dealing with an application that makes lots of requests. You can also trigger break points from
Proxy Scripts which allows you to specify as complex a criteria as you need.

Using ZAP in Continuous Integration
ZAP is an ideal tool to use for security testing in a Continuous Integration environment (CI), allowing
you to find vulnerabilities soon after code has been checked into source control. You can run ZAP in
headless mode using the ‘-daemon’ command line option and then controlling it using the built in REST
API.

A high level approach could be:

1. Proxy browser based regression tests (eg using Selenium) through ZAP in order to explore
the application in a realistic way

2. Use the spiders to discover content not covered by regression tests
3. Run the active scanner to attack the application
4. Read the alerts found and report any new vulnerabilities

Tools like the spiders and active scanners are asynchronous, so you will need to invoke them using the
relevant  ‘scan’ action and then poll  the ‘status’  view until  they complete.  ZAP supports  an HTML
interface to the API which you can use to explore it manually - just proxy your browser via ZAP and
visit http://zap/ or select the Tools / Browse API menu.



The Marketplace
When you start ZAP the second time it will ask if you want to automatically check for updates. This is
recommended but you can choose not to turn this on and check manually. ZAP is made up of a set of
‘core’  features  that  can  only  be  updated  by  ‘full’  ZAP releases.   However  many  features  are
implemented as ‘add-ons’ that can be updated independently without requiring a new ZAP release.
There are also a wide range of add-ons that are not included by default but can be downloaded and
installed from within ZAP. These add-ons can add minor new features or major new functionality.

Add-ons are assigned a status which may be one of: 

- Release which indicates they are of high quality and fit for purpose 
- Beta which indicates they are of reasonable quality but may be incomplete or need further testing 
- Alpha which indicates they are at an early stage of development 

The latest versions of all official  ZAP add-ons are available via the  ZAP Marketplace, which can be
accessed via the Help / Check for Updates… menu or the Manage Add-ons button: 
Many add-ons can be installed dynamically and are available to use without needing to restart  ZAP.
You can configure ZAP to alert you when new release, beta or alpha add-ons become available.

Saving ZAP sessions
You can save ZAP sessions so that all of the data recorded is available to you later. ZAP actually stores
all of the messages in a temporary database on file store, but this database is deleted when you stop
ZAP unless you choose to persist it. If you think you’ll want to save your session then we recommend
that you persist the session at the start, before you start your testing. This will copy the temporary
database  into  a  permanent  one.  You  can  persist  your  session  at  any  stage  in  your  testing,  but
persisting a database with lots of data will take significantly longer than one that is empty. You only
need to persist your session once,  ZAP will keep updating the permanent database as you carry on
testing. You can take ‘snapshots’ of the session database if you want to want to record the state at a
particular time. These snapshots are not updated unless you open them and resume testing.

More information
ZAP includes  a  context  sensitive  help  file  which  includes  information  about  all  of  the  available
functionality, which you can access via the F1 key, the Help / OWASP  ZAP User Guide menu or the
various help buttons on the toolbars: 
On  the  ZAP wiki  (https://github.com/zaproxy/zaproxy/wiki)  you  will  find  tutorial  videos,
conference videos and a wealth of other information.

There are also online groups which you can join to ask questions about ZAP:

http://groups.google.com/group/zaproxy-users  - the user group, for questions about using ZAP
http://groups.google.com/group/zaproxy-develop -  the  developer  group,  for  questions  about
enhancing ZAP

All of these resources can be accessed via the ZAP Online menu.
You can also follow @zaproxy on twitter for official ZAP announcements.


	Overview
	The User Interface
	Quick Start - Attack
	The Spiders
	Proxying your browser
	Active and passive scanning
	Changing requests and responses
	Using ZAP in Continuous Integration
	The Marketplace
	Saving ZAP sessions
	More information

